Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35.824
Filtrar
1.
Physiol Behav ; 263: 114131, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796532

RESUMO

Across vertebrates, the midbrain periaqueductal gray (PAG) plays a critical role in social and vocal behavior. Dopaminergic neurotransmission also modulates these behaviors, and dopaminergic innervation of the PAG has been well documented. Nonetheless, the potential role of dopamine in shaping vocal production at the level of the PAG is not well understood. Here, we tested the hypothesis that dopamine modulates vocal production in the PAG, using a well-characterized vertebrate model system for the study of vocal communication, the plainfin midshipman fish, Porichthys notatus. We found that focal dopamine injections to the midshipman PAG rapidly and reversibly inhibited vocal production triggered by stimulation of known vocal-motor structures in the preoptic area / anterior hypothalamus. While dopamine inhibited vocal-motor output, it did not alter behaviorally-relevant parameters of this output, such as vocalization duration and frequency. Dopamine-induced inhibition of vocal production was prevented by the combined blockade of D1- and D2-like receptors but was unaffected by isolated blockade of either D1-receptors or D2-receptors. Our results suggest dopamine neuromodulation in the midshipman PAG may inhibit natural vocal behavior, in courtship and/or agonistic social contexts.


Assuntos
Dopamina , Atividade Motora , Substância Cinzenta Periaquedutal , Vocalização Animal , Dopamina/farmacologia , Animais , Substância Cinzenta Periaquedutal/efeitos dos fármacos , Vocalização Animal/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Batracoidiformes
2.
Pharm Biol ; 60(1): 689-698, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35298359

RESUMO

CONTEXT: The mammalian circadian clock system regulates physiological function. Crude drugs, containing Polygalae Radix, and Kampo, combining multiple crude drugs, have been used to treat various diseases, but few studies have focussed on the circadian clock. OBJECTIVE: We examine effective crude drugs, which cover at least one or two of Kampo, for the shortening effects on period length of clock gene expression rhythm, and reveal the mechanism of shortening effects. MATERIALS AND METHODS: We prepared 40 crude drugs. In the in vitro experiments, we used mouse embryonic fibroblasts from PERIOD2::LUCIFERASE knock-in mice (background; C57BL/6J mice) to evaluate the effect of crude drugs on the period length of core clock gene, Per2, expression rhythm by chronic treatment (six days) with distilled water or crude drugs (100 µg/mL). In the in vivo experiments, we evaluated the free-running period length of C57BL/6J mice fed AIN-93M or AIN-93M supplemented with 1% crude drug (6 weeks) that shortened the period length of the PERIOD2::LUCIFERASE expression rhythm in the in vitro experiments. RESULTS: We found that Polygalae Radix (ED50: 24.01 µg/mL) had the most shortened PERIOD2::LUCIFERASE rhythm period length in 40 crude drugs and that the CaMKII pathway was involved in this effect. Moreover, long-term feeding with AIN-93M+Polygalae Radix slightly shortened the free-running period of the mouse locomotor activity rhythm. DISCUSSION AND CONCLUSIONS: Our results indicate that Polygalae Radix may be regarded as a new therapy for circadian rhythm disorder and that the CaMKII pathway may be regarded as a target pathway for circadian rhythm disorders.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/fisiologia , Relógios Circadianos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Polygala , Animais , Relação Dose-Resposta a Droga , Masculino , Medicina Kampo , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Transdução de Sinais/efeitos dos fármacos
3.
Artigo em Inglês | MEDLINE | ID: mdl-35114395

RESUMO

Cadmium (Cd) exerts detrimental effects on multiple biological processes of the living organisms along with epigenetic transgenerational effect. Drosophila melanogaster offers unique opportunity to evaluate Cd toxicity when studying important life traits in short duration of time by designing distinct behavioural assays. Present study utilized this model organism to assess Cd induced lethality, retarded growth, decreased life span and altered behaviour of the animals either at larval or adult stage. Our investigations revealed reduced locomotion and reproductive fitness of the animals upon Cd exposure. Transgenerational effect on locomotion was found to be behaviour specific as larval crawling was affected, but adult fly negative geotaxis was comparable to the control. Mechanistically, decreased antioxidant enzymes activity, superoxide dismutase (SOD) and catalase (CAT) together with altered homeostasis of essential elements (Fe, Zn and Mg) may be responsible for the observed effects. Altogether our work showed extensive range of Cd altered Drosophila behaviour which warrants need to control environmental Cd toxicity.


Assuntos
Cádmio/toxicidade , Drosophila melanogaster/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Reprodução/efeitos dos fármacos
4.
Sci Rep ; 12(1): 2425, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35165353

RESUMO

Senolytics are a class of drugs that selectively remove senescent cells. Dasatinib and quercetin have been discovered, and their combination has shown various anti-ageing effects. The SAMP10 mouse strain is a model of brain ageing. Here, we investigated the effect of combination on frailty characteristics in SAMP10. By comparing SAMP10 with SAMR1 mice as normal ageing controls, we investigated some frailty characteristics. Frailty was assessed at 18-38 weeks of age with a clinical frailty index. Motor and cognitive function of these mice were evaluated using behavioral experiments. SAMP10 mice were divided into vehicle and combination, and these functions and histological changes in the brain hippocampus were investigated. Finally, the in vitro effects of combination on oxidative stress-induced senescent muscle and neuronal cells were investigated. As a result, we found that frailty index was higher in SAMP10 than SAMR1. Motor and cognitive function were worse in SAMP10 than SAMR1. Furthermore, combination therapy improved frailty, motor and cognitive function, and the senescent phenotype of the hippocampus compared with vehicle in SAMP10. In summary, SAMP10 showed more marked frailty characteristics than SAMR1, and dasatinib and quercetin attenuated them in SAMP10. From our results, senolytic therapy might contribute protective effects against frailty.


Assuntos
Envelhecimento/efeitos dos fármacos , Antioxidantes/administração & dosagem , Senescência Celular/efeitos dos fármacos , Dasatinibe/administração & dosagem , Fragilidade/tratamento farmacológico , Quercetina/administração & dosagem , Senoterapia/administração & dosagem , Envelhecimento/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Linhagem Celular Tumoral , Cognição/efeitos dos fármacos , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Fragilidade/metabolismo , Hipocampo/metabolismo , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Resultado do Tratamento
5.
Int J Mol Sci ; 23(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216504

RESUMO

Spinal cord injury (SCI) causes significant mortality and morbidity. Currently, no FDA-approved pharmacotherapy is available for treating SCI. Previously, low doses of estrogen (17ß-estradiol, E2) were shown to improve the post-injury outcome in a rat SCI model. However, the range of associated side effects makes advocating its therapeutic use difficult. Therefore, this study aimed at investigating the therapeutic efficacy of Premarin (PRM) in SCI. PRM is an FDA-approved E2 (10%) formulation, which is used for hormone replacement therapy with minimal risk of serious side effects. The effects of PRM on SCI were examined by magnetic resonance imaging, immunofluorescent staining, and western blot analysis in a rat model. SCI animals treated with vehicle alone, PRM, E2 receptor antagonist (ICI), or PRM + ICI were graded in a blinded way for locomotor function by using the Basso-Beattie-Bresnahan (BBB) locomotor scale. PRM treatment for 7 days decreased post-SCI lesion volume and attenuated neuronal cell death, inflammation, and axonal damage. PRM also altered the balance of pro- and anti-apoptotic proteins in favor of cell survival and improved angiogenesis and microvascular growth. Increased expression of estrogen receptors (ERs) ERα and ERß following PRM treatment and their inhibition by ER inhibitor indicated that the neuroprotection associated with PRM treatment might be E2-receptor mediated. The attenuation of glial activation with decreased inflammation and cell death, and increased angiogenesis by PRM led to improved functional outcome as determined by the BBB locomotor scale. These results suggest that PRM treatment has significant therapeutic implications for the improvement of post-SCI outcome.


Assuntos
Estrogênios Conjugados (USP)/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Traumatismos da Medula Espinal/tratamento farmacológico , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Modelos Animais de Doenças , Estradiol/metabolismo , Estrogênios/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Neuroproteção/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo
6.
Toxicol Appl Pharmacol ; 435: 115853, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973289

RESUMO

Parkinson's disease (PD) is the second most common progressive neurodegenerative disorder. Although mounting studies have been conducted, no effective therapy is available to halt its progression. Indole-3-carbinol (I3C) is a naturally occurring compound obtained by ß-thioglucosidase-mediated autolysis of glucobrassicin in cruciferous vegetables. Besides its powerful antioxidant activity, I3C has shown neuroprotection against depression and chemically induced neurotoxicity via its anti-inflammatory and antiapoptotic effects. This study aimed to investigate the neuroprotective effects of I3C against rotenone (ROT)-induced PD in male albino rats. The possible protective mechanisms were also explored. PD was induced by subcutaneous administration of ROT (2 mg/kg) for 28 days. The effects of I3C (25, 50, and 100 mg/kg/day) were assessed by catalepsy test (bar test), spontaneous locomotor activity, rotarod test, weight change, tyrosine hydroxylase (TH) expression, α-synuclein (α-Syn) expression, striatal dopamine (DA) content, and histological examination. The highest dose of I3C (100 mg/kg) was the most effective to prevent ROT-mediated motor dysfunctions and amend striatal DA decrease, weight loss, neurodegeneration, TH expression reduction, and α-Syn expression increase in both the midbrain and striatum. Further mechanistic investigations revealed that the neuroprotective effects of I3C are partially attributed to its anti-inflammatory and antiapoptotic effects and the activation of the sirtuin 1/AMP-activated protein kinase pathway. Altogether, these results suggested that I3C could attenuate biochemical, molecular, and functional changes in a rat PD model with following repeated rotenone exposures.


Assuntos
Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/prevenção & controle , Rotenona , Sirtuína 1/metabolismo , Desacopladores , Animais , Peso Corporal/efeitos dos fármacos , Catalepsia/induzido quimicamente , Catalepsia/prevenção & controle , Dopamina/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Neostriado/efeitos dos fármacos , Neostriado/metabolismo , Doença de Parkinson Secundária/psicologia , Equilíbrio Postural/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Sirtuína 1/efeitos dos fármacos , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/biossíntese , alfa-Sinucleína/efeitos dos fármacos
7.
Neurobiol Dis ; 163: 105605, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34973450

RESUMO

Parkinson's disease (PD) is characterized by impaired mitochondrial function and decreased ATP levels. Aerobic glycolysis and lactate production have been shown to be upregulated in dopaminergic neurons to sustain ATP levels, but the effect of upregulated glycolysis on dopaminergic neurons remains unknown. Since lactate promotes apoptosis and α-synuclein accumulation in neurons, we hypothesized that the lactate produced upon upregulated glycolysis is involved in the apoptosis of dopaminergic neurons in PD. In this study, we examined the expression of hexokinase 2 (HK2) and lactate dehydrogenase (LDH), the key enzymes in glycolysis, and lactate levels in the substantia nigra pars compacta (SNpc) of a MPTP-induced mouse model of PD and in MPP+-treated SH-SY5Y cells. We found that the expression of HK2 and LDHA and the lactate levels were markedly increased in the SNpc of MPTP-treated mice and in MPP+-treated SH-SY5Y cells. Exogenous lactate treatment led to the apoptosis of SH-SY5Y cells. Intriguingly, lactate production and the apoptosis of dopaminergic neurons were suppressed by the application of 3-bromopyruvic acid (3-Brpa), a HK2 inhibitor, or siRNA both in vivo and in vitro. 3-Brpa treatment markedly improved the motor behaviour of MPTP-treated mice in pole test and rotarod test. Mechanistically, lactate increases the activity of adenosine monophosphate-activated protein kinase (AMPK) and suppresses the phosphorylation of serine/threonine kinase 1 (Akt) and mammalian target of rapamycin (mTOR). Together, our data suggest that upregulated HK2 and LDHA and increased lactate levels prompt the apoptosis of dopaminergic neurons in PD. Inhibition of HK2 expression attenuated the apoptosis of dopaminergic neurons by downregulating lactate production and AMPK/Akt/mTOR pathway in PD.


Assuntos
Apoptose/fisiologia , Neurônios Dopaminérgicos/metabolismo , Hexoquinase/metabolismo , L-Lactato Desidrogenase/metabolismo , Ácido Láctico/metabolismo , Transtornos Parkinsonianos/metabolismo , Parte Compacta da Substância Negra/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Hexoquinase/genética , Humanos , L-Lactato Desidrogenase/genética , Camundongos , Atividade Motora/efeitos dos fármacos , Transtornos Parkinsonianos/genética , Parte Compacta da Substância Negra/efeitos dos fármacos , Piruvatos/farmacologia , Regulação para Cima
8.
Sci Rep ; 12(1): 367, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013368

RESUMO

The posterior pallial amygdala (PoA) is located on the basolateral caudal telencephalon, including the basal division of PoA (PoAb) and the compact division of PoA (PoAc). PoA plays a vital role in emotion regulation and is considered a part of the amygdala in birds. However, the regulatory functions responsible for motor behaviors and emotions between PoAb and PoAc are poorly understood. Therefore, we studied the structure and function of PoA by tract-tracing methods, constant current electrical stimulation, and different dopamine receptor drug injections in pigeons (Columba livia domestica). PoAb connects reciprocally with two nuclear groups in the cerebrum: 1) a continuum comprising the temporo-parieto-occipitalis, corticoidea dorsolateralis, hippocampus, and parahippocampalis areas and 2) rostral areas of the hemisphere, including the nucleus septalis lateralis and nucleus taeniae amygdalae. Extratelencephalic projections of PoAb terminate in the lateral hypothalamic nucleus and are scattered in many limbic midbrain regions. PoAb and PoAc mainly mediated the turning movement. In the 'open-field' test, D1 agonist and D2 antagonist could significantly reduce the latency period for entering into the central area and increase the residence time in the central area, whereas D1 antagonist and D2 agonist had the opposite effect. PoAb and PoAc are important brain areas that mediate turning behavior.


Assuntos
Tonsila do Cerebelo/fisiologia , Comportamento Animal , Columbidae/fisiologia , Atividade Motora , Tonsila do Cerebelo/efeitos dos fármacos , Tonsila do Cerebelo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Columbidae/metabolismo , Dopamina/metabolismo , Agonistas de Dopamina/farmacologia , Antagonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/fisiologia , Estimulação Elétrica , Feminino , Masculino , Atividade Motora/efeitos dos fármacos , Técnicas de Rastreamento Neuroanatômico , Teste de Campo Aberto , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo
9.
Brain Res ; 1780: 147802, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085574

RESUMO

Cuprizone (CPZ) is a copper-chelator and toxic to mitochondria. Recent studies have shown oligodendrocyte (OL) loss and demyelination along with dopamine (DA) increase and behavioral abnormalities in CPZ-exposed mice, demonstrating its application in schizophrenia research. This study examined effects of CPZ exposure on autonomous behavior and dopaminergic neurotransmission in larval zebra fish. CPZ exposure was found to reduce the swimming velocity of zebra fish thus decreased swimming distance during day and night time. Moreover, the treatment induced a movement response of zebra fish larvae reacting to light-on/off switch featured by swimming velocity increase and decrease during the first and second half of the light-on/off phase, respectively. But, it abolished responses of zebra fish to sound-on/off seen in Control group. HPLC analysis showed elevated DA levels in the zebra fish, no change in NE and 5-HT levels. Transcriptome analysis reported changes in gene expression related to dopaminergic synapse and oxidative phosphorylation in CPZ-exposed larvae relative to Control group. Of the gene expression changes, up-regulation of drd2a, drd2b, drd4a and drd4rs was confirmed by RT-PCR, although no difference existed between Control and CPZ groups in dopaminergic neuron numbers. These results demonstrated dopaminergic hyperactivity and locomotor deficit in CPZ-exposed zebra fish larvae, encouraging further application of this model in exploring neurotoxic effects of CPZ on mitochondria and dopaminergic neurotransmission in zebra fish.


Assuntos
Cuprizona/farmacologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Peixe-Zebra
10.
Acta Neuropathol Commun ; 10(1): 11, 2022 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093182

RESUMO

Cisplatin is used to combat solid tumors. However, patients treated with cisplatin often develop cognitive impairments, sensorimotor deficits, and peripheral neuropathy. There is no FDA-approved treatment for these neurotoxicities. We investigated the capacity of a highly selective A3 adenosine receptor (AR) subtype (A3AR) agonist, MRS5980, to prevent and reverse cisplatin-induced neurotoxicities. MRS5980 prevented cisplatin-induced cognitive impairment (decreased executive function and impaired spatial and working memory), sensorimotor deficits, and neuropathic pain (mechanical allodynia and spontaneous pain) in both sexes. At the structural level, MRS5980 prevented the cisplatin-induced reduction in markers of synaptic integrity. In-situ hybridization detected Adora3 mRNA in neurons, microglia, astrocytes and oligodendrocytes. RNAseq analysis identified 164 genes, including genes related to mitochondrial function, of which expression was changed by cisplatin and normalized by MRS5980. Consistently, MRS5980 prevented cisplatin-induced mitochondrial dysfunction and decreased signs of oxidative stress. Transcriptomic analysis showed that the A3AR agonist upregulates genes related to repair pathways including NOTCH1 signaling and chromatin modification in the cortex of cisplatin-treated mice. Importantly, A3AR agonist administration after completion of cisplatin treatment resolved cognitive impairment, neuropathy and sensorimotor deficits. Our results highlight the efficacy of a selective A3AR agonist to prevent and reverse cisplatin-induced neurotoxicities via preventing brain mitochondrial damage and activating repair pathways. An A3AR agonist is already in cancer, clinical trials and our results demonstrate management of neurotoxic side effects of chemotherapy as an additional therapeutic benefit.


Assuntos
Agonistas do Receptor A3 de Adenosina/farmacologia , Antineoplásicos/efeitos adversos , Comprometimento Cognitivo Relacionado à Quimioterapia/tratamento farmacológico , Cisplatino/efeitos adversos , Receptor A3 de Adenosina/metabolismo , Memória Espacial/efeitos dos fármacos , Agonistas do Receptor A3 de Adenosina/uso terapêutico , Animais , Feminino , Masculino , Camundongos , Atividade Motora/efeitos dos fármacos , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dor/metabolismo
11.
Pharmacol Biochem Behav ; 213: 173337, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35063467

RESUMO

Manganese (Mn) is an essential micronutrient but is neurotoxic in excess. Environmental and genetic factors influence vulnerability to Mn toxicity, including sex, age, and the autosomal dominant mutation that causes Huntington disease (HD). To better understand the differential effects of Mn in wild-type (WT) versus YAC128 mice, we examined impacts of Mn exposure across different ages and sexes on disease-relevant behavioral tasks and dopamine dynamics. Young (3-week) and aged (12-month) WT and YAC128 mice received control (70 ppm) or high (2400 ppm) Mn diet for 8 weeks followed by a battery of behavioral tasks. In young female WT mice, high Mn diet induced hyperactivity across two independent behavioral tasks. Changes in the expression of tyrosine hydroxylase (TH) were consistent with the behavioral data in young females such that elevated TH in YAC128 on control diet was decreased by high Mn diet. Aged YAC128 mice showed the expected disease-relevant behavioral impairments in females and decreased TH expression, but we observed no significant effects of Mn diet in either genotype of the aged group. Fast-scan cyclic voltammetry recorded dopamine release and clearance in the nucleus accumbens of eight-month-old WT and YAC128 mice following acute Mn exposure (3×/1 week subcutaneous injections of 50 mg/kg MnCl[2]-tetrahydrate or saline). In WT mice, Mn exposure led to faster dopamine clearance that resembled saline treated YAC128 mice. Mn treatment increased dopamine release only in YAC128 mice, possibly indirectly correcting the faster dopamine clearance observed in saline treated YAC128 mice. The same exposure paradigm led to decreased dopamine and serotonin and metabolites (3-MT, HVA and 5-HIAA) in striatum and increased glutamate in YAC128 mice but not WT mice. These studies confirm an adverse effect of Mn in young, female WT animals and support a role for Mn exposure in stabilizing dopaminergic dysfunction and motivated behavior in early HD.


Assuntos
Dopamina/metabolismo , Doença de Huntington/metabolismo , Manganês/farmacologia , Atividade Motora/efeitos dos fármacos , Fatores Etários , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Doença de Huntington/genética , Hipercinese/induzido quimicamente , Manganês/toxicidade , Camundongos , Núcleo Accumbens/metabolismo , Serotonina/metabolismo , Fatores Sexuais , Tirosina 3-Mono-Oxigenase/metabolismo
12.
Cells ; 11(2)2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053358

RESUMO

A subarachnoid hemorrhage (SAH), leading to severe disability and high fatality in survivors, is a devastating disease. Neuro-inflammation, a critical mechanism of cerebral vasospasm and brain injury from SAH, is tightly related to prognoses. Interestingly, studies indicate that 2-[(pyridine-2-ylmethyl)-amino]-phenol (2-PMAP) crosses the blood-brain barrier easily. Here, we investigated whether the vasodilatory and neuroprotective roles of 2-PMAP were observed in SAH rats. Rats were assigned to three groups: sham, SAH and SAH+2-PMAP. SAHs were induced by a cisterna magna injection. In the SAH+2-PMAP group, 5 mg/kg 2-PMAP was injected into the subarachnoid space before SAH induction. The administration of 2-PMAP markedly ameliorated cerebral vasospasm and decreased endothelial apoptosis 48 h after SAH. Meanwhile, 2-PMAP decreased the severity of neurological impairments and neuronal apoptosis after SAH. Furthermore, 2-PMAP decreased the activation of microglia and astrocytes, expressions of TLR-4 and p-NF-κB, inflammatory markers (TNF-α, IL-1ß and IL-6) and reactive oxygen species. This study is the first to confirm that 2-PMAP has vasodilatory and neuroprotective effects in a rat model of SAH. Taken together, the experimental results indicate that 2-PMAP treatment attenuates neuro-inflammation, oxidative stress and cerebral vasospasm, in addition to ameliorating neurological deficits, and that these attenuating and ameliorating effects are conferred through the TLR-4/NF-κB pathway.


Assuntos
Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/etiologia , Inflamação/complicações , Neurônios/patologia , Piridinas/uso terapêutico , Hemorragia Subaracnóidea/complicações , Vasoespasmo Intracraniano/tratamento farmacológico , Vasoespasmo Intracraniano/etiologia , Animais , Apoptose/efeitos dos fármacos , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Comportamento Animal/efeitos dos fármacos , Lesões Encefálicas/fisiopatologia , Citocinas/metabolismo , Inflamação/fisiopatologia , Mediadores da Inflamação/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Modelos Biológicos , Atividade Motora/efeitos dos fármacos , NF-kappa B/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Piridinas/farmacologia , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Índice de Gravidade de Doença , Transdução de Sinais , Hemorragia Subaracnóidea/fisiopatologia , Receptor 4 Toll-Like/metabolismo , Vasoespasmo Intracraniano/patologia , Vasoespasmo Intracraniano/fisiopatologia
13.
Brain Res Bull ; 181: 55-64, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35041849

RESUMO

Believed to cause damage to the nervous system and possibly being associated with neurodegenerative diseases, deltamethrin (DM) is a type II pyrethroid used in pest control, public health, home environment, and vector control. The objective of this study was to evaluate the motor, cognitive and emotional changes associated with dopaminergic and BDNF imbalance after DM exposure in rats. Sixty Wistar rats (9-10 months-old) were used, under Ethics Committee on Animal Research license (ID 19/2017). The animals were randomly divided into four groups: control (CTL, 0.9% saline), DM2 (2 mg DM in 1.6 mL 0.9% saline), DM4 (4 mg of DM in 1.6 mL of 0.9% saline), and DM8 (8 mg of DM in 1.6 mL of 0.9% saline). DM groups were submitted to 9 or 15 inhalations, one every 48 h. Half of the animals from each group were randomly selected and perfused 24 h after the 9th or 15th inhalation. Throughout the experiment, the animal's behavior were evaluated using catalepsy test, open field, hole-board test, Modified Elevated Plus Maze, and social interaction. At the end of the experiments, the rats were perfused transcardially and their brains were processed for Tyrosine Hydroxylase (TH) and Brain derived neurotrophic factor (BDNF) immunohistochemistries. The animals submitted to 9 inhalations of DM showed a reduction in immunoreactivity for TH in the Substantia nigra pars compacta (SNpc), ventral tegmental area (VTA), and dorsal striatum (DS) areas, and an increase in BDNF in the DS and CA1, CA3 and dentate gyrus (DG) hippocampal areas. Conversely, the animals submitted to 15 inhalations of DM showed immunoreactivity reduced for TH in the SNpc and VTA, and an increase in BDNF in the hippocampal areas (CA3 and DG). Our results indicate that the DM inhalation at different periods induce motor and cognitive impairments in rats. Such alterations were accompanied by dopaminergic system damage and a possible dysfunction on synaptic plasticity.


Assuntos
Ansiedade/induzido quimicamente , Fator Neurotrófico Derivado do Encéfalo/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Disfunção Cognitiva/induzido quimicamente , Inseticidas/farmacologia , Transtornos da Memória/induzido quimicamente , Atividade Motora/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Nitrilas/farmacologia , Piretrinas/farmacologia , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Dopamina/metabolismo , Exposição por Inalação , Inseticidas/administração & dosagem , Nitrilas/administração & dosagem , Piretrinas/administração & dosagem , Distribuição Aleatória , Ratos , Ratos Wistar , Comportamento Social
14.
Pharmacol Biochem Behav ; 213: 173336, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35041858

RESUMO

RATIONALE: We define behavioral sensitization as an augmented response to subsequent dosing after chronic intermittent administration of a drug. However, the biphasic effects of ethanol (EtOH), first stimulatory followed by depressive, make animal models of behavioral sensitization rare. OBJECTIVES: This study aimed to determine a dose of EtOH that did not depress wheel-running (WR) in CD1 mice and then to develop a model of EtOH-induced behavioral sensitization. METHODS: For the first part of this study, male CD1 mice (n = 24, 6/group) were administered either phosphate buffer saline (PBS), 0.5 g/kg, 1 g/kg, or 2 g/kg EtOH at a volume of 3 ml/kg, intraperitoneally (IP). Mice were divided into equal groups and received the weight-based dose once daily on Days 1, 2, 3, 4, and 5. All mice received a challenge dose of 0.5 g/kg on Day 10. In both parts of the study, mice were habituated to the running wheel for 5 min prior to dosing and wheel running was measured for 10 min after each dose. RESULTS: The acute dose-response of EtOH effects on wheel running determined a significant difference between doses in wheel running (p < 0.05), with a post-hoc analysis establishing that 0.5 g/kg EtOH resulted in significantly more WR compared to 2 g/kg EtOH (p < 0.05). The chronic study demonstrated a significant main effect of Day (1 vs. 5 vs. Challenge, p < 0.001) and an interaction between Day and Treatment, with post-hoc analysis determining the effect to be between PBS and EtOH WR on Day 5 (p < 0.05). In addition, Bonferroni post-hoc analysis determined no differences between Days in the PBS condition, but a significant difference in the EtOH condition between Day 1 and Day 5 (p < 0.001) and that difference from Day 1 persisted when comparing to the Challenge Day (p < 0.01). CONCLUSION: After chronic, intermittent, low dose administration of EtOH, male mice showed an increase in activity as measured by wheel running. Therefore, we laid the groundwork for a potentially useful rodent model for EtOH-induced behavioral sensitization.


Assuntos
Comportamento Animal/efeitos dos fármacos , Etanol/farmacologia , Atividade Motora/efeitos dos fármacos , Alcoolismo/metabolismo , Alcoolismo/psicologia , Animais , Modelos Animais de Doenças , Esquema de Medicação , Etanol/administração & dosagem , Masculino , Camundongos , Fatores de Tempo
15.
Biochem Biophys Res Commun ; 592: 87-92, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35033871

RESUMO

We screened pre-approved drugs for the survival of the Hu5/KD3 human myogenic progenitors. We found that meclozine, an anti-histamine drug that has long been used for motion sickness, promoted the proliferation and survival of Hu5/KD3 cells. Meclozine increased expression of MyoD, but reduced expression of myosin heavy chain and suppressed myotube formation. Withdrawal of meclozine, however, resumed the ability of Hu5/KD3 cells to differentiate into myotubes. We examined the effects of meclozine on mdx mouse carrying a nonsense mutation in the dystrophin gene and modeling for Duchenne muscular dystrophy. Intragastric administration of meclozine in mdx mouse increased the body weight, the muscle mass in the lower limbs, the cross-sectional area of the paravertebral muscle, and improved exercise performances. Previous reports show that inhibition of phosphorylation of ERK1/2 improves muscle functions in mouse models for Emery-Dreifuss muscular dystrophy and cancer cachexia, as well as in mdx mice. We and others previously showed that meclozine blocks the phosphorylation of ERK1/2 in cultured cells. We currently showed that meclozine decreased phosphorylation of ERK1/2 in muscles in mdx mice but not in wild-type mice. This was likely to be one of the underlying mechanisms of the effects of meclozine on mdx mice.


Assuntos
Meclizina/farmacologia , Força Muscular/fisiologia , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Masculino , Meclizina/uso terapêutico , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Atividade Motora/efeitos dos fármacos , Desenvolvimento Muscular/efeitos dos fármacos , Força Muscular/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/fisiopatologia , Fosforilação/efeitos dos fármacos
16.
Exp Neurol ; 350: 113963, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34968423

RESUMO

Neurobehavioral deficits emerge in nearly 50% of patients following a mild traumatic brain injury (TBI) and may persist for months. Ketamine is used frequently as an anesthetic/analgesic and for management of persistent psychiatric complications. Although ketamine may produce beneficial effects in patients with a history of TBI, differential sensitivity to its impairing effects could make the therapeutic use of ketamine in TBI patients unsafe. This series of studies examined male C57BL/6 J mice exposed to a mild single blast overpressure (mbTBI) for indications of altered sensitivity to ketamine at varying times after injury. Dystaxia (altered gait), diminished sensorimotor gating (reduced prepulse inhibition) and impaired working memory (step-down inhibitory avoidance) were examined in mbTBI and sham animals 15 min following intraperitoneal injections of saline or R,S-ketamine hydrochloride, from day 7-16 post injury and again from day 35-43 post injury. Behavioral performance in the forced swim test and sucrose preference test were evaluated on day 28 and day 74 post injury respectively, 24 h following drug administration. Dynamic gait stability was compromised in mbTBI mice on day 7 and 35 post injury and further exacerbated following ketamine administration. On day 14 and 42 post injury, prepulse inhibition was robustly decreased by mbTBI, which ketamine further reduced. Ketamine-associated memory impairment was apparent selectively in mbTBI animals 1 h, 24 h and day 28 post shock (tested on day 15/16/43 post injury). Ketamine selectively reduced immobility scores in the FST in mbTBI animals (day 28) and reversed mbTBI induced decreases in sucrose consumption (Day 74). These results demonstrate increased sensitivity to ketamine in mice when tested for extended periods after TBI. The results suggest that ketamine may be effective for treating neuropsychiatric complications that emerge after TBI but urge caution when used in clinical practice for enhanced sensitivity to its side effects in this patient population.


Assuntos
Anestésicos Dissociativos/farmacologia , Comportamento Animal/efeitos dos fármacos , Traumatismos por Explosões/psicologia , Lesões Encefálicas Traumáticas/psicologia , Ketamina/farmacologia , Anestésicos Dissociativos/efeitos adversos , Animais , Ataxia/etiologia , Ataxia/psicologia , Concussão Encefálica , Ketamina/efeitos adversos , Coxeadura Animal/induzido quimicamente , Coxeadura Animal/psicologia , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/efeitos dos fármacos , Inibição Pré-Pulso , Desempenho Psicomotor/efeitos dos fármacos , Filtro Sensorial/efeitos dos fármacos
17.
J Neuroimmunol ; 362: 577786, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34920280

RESUMO

We examined the effect of an immunomodulator hydroxychloroquine, also known as a Nurr1 ligand and an autophagy inhibitor, on a mouse model of intracerebral hemorrhage (ICH). Daily administration of hydroxychloroquine (100 mg/kg, i.p.) from 3 h after induction of ICH alleviated neurological deficits of mice, increased the number of surviving neurons in the hematoma and prevented fragmentation of axon structures in the internal capsule. Unexpectedly, hydroxychloroquine did not inhibit either upregulation of pro-inflammatory mediators or autophagic responses in the brain. Hence, hydroxychloroquine may produce therapeutic effects on ICH primarily via neuroprotection including preservation of the axon tract integrity.


Assuntos
Encéfalo/efeitos dos fármacos , Hemorragia Cerebral/patologia , Hidroxicloroquina/farmacologia , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Autofagia/efeitos dos fármacos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR
18.
Neuroreport ; 33(1): 33-42, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34874327

RESUMO

OBJECTIVES: Spinal cord injury (SCI) is a disastrous central nervous system (CNS) disorder, which was intimately associated with oxidative stress. Studies have confirmed that Iridoids Effective Fraction of Valeriana jatamansi Jones (IEFV) can scavenge reactive oxygen species. This study aimed to confirm the efficacy of IEFV in ameliorating SCI. METHODS: For establish the SCI model, the Sprague-Dawley rats underwent a T10 laminectomy with transient violent oppression by aneurysm clip. Then, the rats received IEFV intragastrically for 8 consecutive weeks to evaluate the protective effect of IEFV on motor function, oxidative stress, inflammation and neurotrophic factors in SCI rats. RESULTS: Basso, Beattie and Bresnahan scores, hematoxylin and eosin (H&E) staining and transmission electron microscopy experiments found IEFV protected motor function and alleviated neuron damage. Meanwhile, IEFV treatment decreased the release of malondialdehyde, interleukin-6 (IL-6), cyclooxygenase-2 and tumor necrosis factor-α. Moreover, IEFV treatment elevated the expression levels of brain-derived neurotrophic factor and nerve growth factor of SCI rats. Finally, administration of IEFV significantly inhibited the expression of p-p65 and toll-like receptor 4 (TLR4). CONCLUSIONS: This study suggests that IEFV could attenuate the oxidative stress and inflammatory response of the spinal cord after SCI, which was associated with inhibition of the TLR4/nuclear factor-kappaB signaling pathway.


Assuntos
Atividade Motora/efeitos dos fármacos , Extratos Vegetais/farmacologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Traumatismos da Medula Espinal/patologia , Medula Espinal/efeitos dos fármacos , Animais , Feminino , Sequestradores de Radicais Livres/farmacologia , Iridoides/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/patologia , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Medula Espinal/patologia , Valeriana
19.
Neurosci Lett ; 766: 136344, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34785309

RESUMO

The present study aimed to examine the synergistic effects of exercise and pharmacological inhibition of the α5 subunit-containing gamma-aminobutyric acid (GABA)A receptors (α5GABAAR) on motor function recovery after intracerebral hemorrhage (ICH). Wistar rats were divided into five groups (n = 8 per group): SHAM, ICH, ICH + exercise (ICH + EX), ICH + L-655,708 (ICH + L6), and ICH + L-655,708 and exercise (ICH + L6EX) groups. ICH was induced by microinjection of a collagenase solution. The ICH + EX and ICH + L6EX groups exercised on a treadmill (12 m/min for 30 min/day). L-655,708 (0.5 mg/kg), a negative allosteric modulator of α5GABAAR, was administered intraperitoneally to the ICH + L6 and ICH + L6EX groups. Each intervention was initiated 1 week after the ICH surgery and was performed for 3 weeks, followed by tissue collection, including the motor cortex and spinal cord. At 4 weeks after ICH, significant motor recovery was found in the ICH + L6EX group compared to the ICH group. L-655,708 administration increased brain-derived neurotrophic factor (BDNF) expression in the cortex. Regarding neuroplastic changes in the spinal cord, rats in the ICH + L6EX group showed a significant increase in several neuroplastic markers: 1) BDNF, 2) growth-associated protein 43 as an axonal sprouting marker, 3) synaptophysin as a synaptic marker, and 4) Nogo-A as an axonal growth inhibitor. This study is the first to demonstrate that combined treatment with exercise and α5GABAAR inhibitor effectively promoted motor function recovery after ICH. Regarding the underlying mechanism of post-ICH recovery with the combined treatment, the present study highlights the importance of both growth and inhibitory modification of axonal sprouting in the spinal cord.


Assuntos
Hemorragia Cerebral , Antagonistas de Receptores de GABA-A/farmacologia , Imidazóis/farmacologia , Condicionamento Físico Animal/métodos , Recuperação de Função Fisiológica/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Ratos , Ratos Wistar , Receptores de GABA-A , Recuperação de Função Fisiológica/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos
20.
Neurosci Lett ; 766: 136352, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34788677

RESUMO

The aim of the current study was to determine effects of the prenatal exposure to crocin in the expression of withdrawal syndrome on reflexive motor behaviors in mice offspring's. Fourteen male mice and 56 adult female mice were randomly divided into seven groups as: control group (morphine-abstinent male and female); group 2, drug-naïve female and morphine-abstinent male; group 3, drug-naïve male and morphine-abstinent females; group 4, drug-naïve male and female. Groups 5-7, were similar to groups 2-4, except crocin (5 mg/kg) were injected to drug-naïve subjects. Following delivery, 20 pups from each litter were selected and behavior and reflexive motor behaviors were determined. Also, blood samples were taken to determine serum antioxidant activity. According to the results, immobility time significantly increased in offspring of the paternal + maternal exposed to morphine swimming test and tail suspension tests (P < 0.05) and significantly decreased in offspring of paternal + maternal exposed to morphine + crocin group (P < 0.05). Ambulation, surface righting, hind-limb suspension, grip strength and front limb suspension significantly decreased in offspring of the mice exposed to morphine (P < 0.05) and significantly improved in offspring of paternal + maternal exposed to morphine + crocin group (P < 0.05). Hind-limb foot angle and negative geotaxis significantly increased in mice with morphine-exposed offspring's (P < 0.05) while improved in offspring of paternal + maternal exposed to morphine + crocin group (P < 0.05). Prenatal exposure to morphine increased Malondialdehyde while decreased Superoxide dismutase, Glutathione peroxidase and total antioxidant status in mice offspring's (P < 0.05) and these results reversed by prenatal exposure to crocin (P < 0.05). In all studied factors, paternal + maternal exposed to morphine + crocin group had better results compared to the other crocin-received drug-naïve groups (P < 0.05). These results suggested prenatal exposure to crocin decreased morphine-induced adverse effect which paternal and maternal exposed to morphine + crocin had the highest prevention against these effects in mice offspring's.


Assuntos
Carotenoides/farmacologia , Morfina/efeitos adversos , Atividade Motora/efeitos dos fármacos , Entorpecentes/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Síndrome de Abstinência a Substâncias , Animais , Comportamento Animal/efeitos dos fármacos , Feminino , Masculino , Camundongos , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...